

0960-894X(94)00433-1

SYNTHESIS AND VASORELAXANT ACTIVITY OF *N*-IMINO-2-(BENZOPYRAN-4-YL)PYRIDINE K+ CHANNEL OPENERS

Tadakatsu Takahashi, Hiroshi Koga,* Haruhiko Sato, Takenori Ishizawa, Naoki Taka, and Jun-ichi Imagawa

Fuji-gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412, Japan

Abstract: The synthesis and vasorelaxant activity of N-imino-2-(benzopyran-4-yl)pyridines are described. Some of these compounds displayed potent smooth muscle relaxant activity.

K⁺ channel openers such as levcromakalim (1) represent a novel class of smooth muscle relaxants. Particular applications include asthma, hypertension, and urinary incontinence. Recently more potent benzopyran-type K⁺ channel openers such as Ro 31-6930 (2) have appeared. ²

Previously, we constructed a pharmacophore model of K⁺ channel openers.^{3a} The model suggested that the pyrrolidinone oxygen of leveromakalim may contribute to hydrogen bonding interaction with the receptor. Subsequent analysis with the model revealed that the N-oxide of Ro 31-6930 may likewise work as a hydrogen-bond acceptor.^{3b} It is known that aromatic amine N-imines have chemical and physical similarities, that is, isosterism with aromatic amine N-oxides.⁴ Thus this work was conducted to know whether the N-imines is a bioisoster for the N-oxides.⁵ In this paper, we report the synthesis and biological activity of N-imino-2-(benzopyran-4-yl)pyridines.

Compounds prepared in this study are listed in Table I, and their synthetic routes are outlined in Scheme I and II. Reaction of the benzopyran-4-one 3^{3c} with trifluoromethanesulfonic anhydride and 4-dimethylaminopyridine (DMAP) gave the triflate 4. The coupling reaction of the triflate 4 with 2-trimethystannylpyridine in the presence of a catalytic amount of $Pd_2(dba)_3(CHCl_3)$, LiCl, and triphenylphosphine in THF gave the pyridine derivative 5.6 The pyridine 5 was readily oxidized to the pyridine N-oxide 6 by treatment with m-chloroperbenzoic acid (m-CPBA). The pyridine 5 was allowed to react with O-mesitylenesulfonylhydroxylamine (MSH)⁷ to give the N-aminopyridinium mesitylenesulfonate 7. In order to obtain stable N-imine derivatives, 4 compound 7 was treated with

BrCN in the presence of NaH (method A) to afford the expected stable N-cyanoimine derivatives 8a-c. The N-imine of 7 (R₁=CH₂F, R₂=NO₂) was also treated with a variety of electrophilic reagents to give the stable N-acetyl (8d), N-benzoyl (8e), N-methanesulfonyl (8f), N-nitro (8g), and N-phenylcarbamoyl (8h) derivatives. The 6-perfluoroalkyl N-cyanoimino compounds 8i-k were likewise prepared from the corresponding pyridines 11 (R₂=CF₃, C₂F₅, C₃F₇), which were obtained via several steps from the nitro compound 5a in the usual ways⁸ as shown in Scheme II.

The vasorelaxant activities of compounds were determined by the effects on 30 mM KCl responses in isolated rat aorta and are shown in Table I in comparison with leveromakalim (1) and Ro 31-6930 (2).

The N-cyanoiminopyridines 8a-c showed vasorelaxant activity almost comparable to or slightly less than the corresponding pyridine N-oxides 2 and 6a-b. On the other hand, replacement of the N-cyano group (8c) to more bulky electron withdrawing groups remarkably reduced the activity as seen in compounds 8d-h. These results show that the N-cyanoimino group of 2-(benzopyran-4-yl)pyridine K+ channel opener may be a bioisoster for the N-oxide, but size of the imine N-substituents seems to be a critical factor with the bulky one being detrimental to the affinity for the receptor. Structure-activity relationships on the 6-substituents revealed that activity seems to vary with the electron withdrawing group with optimum size or hydrophobicity supporting the data of the 6-perfluoroalkyl compounds (8i-k) with 8j showing peak activity. Among compounds prepared, 8j was found to be approximately 10-fold more potent than the reference compound 2.

In conclusion, we were able to explain that aromatic amine N-imines, an interesting isoelectronic group for aromatic amine N-oxides, are a bioisoster for the N-oxides in K⁺ channel opening action. This also seems to be a first example to show the N-imine group playing an apparent role in biological action.

Scheme I

(a) Tf₂O, DMAP, CH₂Cl₂ (b) 2-trimethylstannylpyridine, Pd₂(dba)₃(CHCl₃), PPh₃, LiCl, THF (c) *m*-CPBA, CH₂Cl₂ (d) *O*-mesitylenesulfonylhydroxylamine, CH₂Cl₂ (e) BrCN, NaH, DMF (method A) (f) AcCl, Ac₂O (method B) (g) PhCOCl, NaOH (method C) (h) MsCl (mehod D) (i) HNO₃, Ac₂O (method E) (j) PhNCO, CH₂Cl₂ (method F)

Scheme II

(k) SnCl2, EtOH (l) 1) NaNO2, H2SO4 2) KI, H2O, CH2Cl2 (m) R2COOK, Cul, DMF-toluene (n) 1) O-mesitylenesulfonylhydroxylamine, CH2Cl2 2) BrCN, NaH, DMF

Table I. Physical properties and vasorelaxant activity of N-iminopyridine 8

$$R_2$$
 R_1
 R_1
 R_1
 R_1
 R_1

				<u> </u>		_	Rat aorta		
Compd.	R ₁	R ₂	X	method	% yielda	mp, °C	pEC50b	IA (%) ^C	nd
Ro31-6930 (2)							7.61±0.03	78.2±8.6	3
6a	CH ₂ F	CN			36	204-207	7.78 ± 0.10	71.1 ± 5.1	3
6b	CH ₂ F	NO ₂			27	183-184	8.76±0.10	66.3 ± 1.1	3
8a	Me	CN	CN	Α	17	229-230	7.01 ± 0.17	63.2 ± 6.7	3
8b	CH ₂ F	CN	CN	Α	26	251-253	7.29 ± 0.11	76.9 ± 6.3	3
8c	CH ₂ F	NO ₂	CN	Α	50	212-214	8.34±0.19	72.7 ± 3.1	3
8d	CH ₂ F	NO ₂	COMe	В	68	202-204	<5.0		3
8e	CH ₂ F	NO_2	COPh	С	26	189-190	<5.0		3
8f	CH ₂ F	NO_2	SO ₂ Me	D	14	197-198	5.52 ± 0.09	74.2 <u>+</u> 0.9	3
8g	CH ₂ F	NO_2	\overline{NO}_2	E	10	207-208	6.00 ± 0.14	98.5 ± 2.9	3
8h	CH ₂ F	NO_2	CONHPh	F	47	103-105	5.04 ± 0.04	89.5±2.0	3
8i	CH_2F	$\overline{\text{CF}_3}$	CN	G	39	228-230	8.02 ± 0.10	62.3±5.6	3
8j	CH_2F	C ₂ F ₅	CN	G	69	190-191	8.53+0.28	71.9 ± 0.9	3
8k	CH ₂ F	C ₃ F ₇	CN	Ğ	28	162-163	7.75 ± 0.01	74.6 ± 6.0	3
levcromakalim (1)				_			6.97 ± 0.05	72.5 ± 3.6	8

^aSatisfactory microanalysis was obtained for all crystalline compounds. ^bNegative logarithm of the molar concentration required to relax rat aorta precontracted with 30 mM KCi by 50% of IA, with \pm SEM. See reference 3a for experimental details. ^cIntrinsic activity \pm SEM (%). ^dNumber of determinations.

References

- (a) Potassium Channels: Structure, Classification, Function, and Therapeutic Potential; Cook, N. S., Ed.; Ellis Horwood Limited: Chicheter, 1990.
 (b) Robertson, D. W.; Steinberg, M. I. J. Med. Chem. 1990, 33, 1529.
 (c) Edward, G.; Weston, A. H. Trends Pharmacol. Sci. 1990, 11, 417.
 (d) Evans, J. M.; Longman, S. D. Ann. Rep. Med. Chem. 1991, 26, 73.
- (a) Attwood, M. R.; Jones, P. S.; Kay, P. B.; Paciorek, P. M.; Redshaw, S. Life Science 1991, 48, 803.
 (b) Attwood, M. R.; Churcher, I.; Dunsdon, R. M.; Hurst, D. N.; Jones, P. S. Tetrahedron Lett. 1991, 32, 811.
- (a) Koga, H.; Ohta, M.; Sato, H.; Ishizawa, T.; Nabata, H. Bioorg. Med. Chem. Lett. 1993, 3, 625.
 (b) Koga, H., unpublished results. (c) Sato, H.; Koga, H.; Ishizawa, T.; Makino, T.; Taka, N.; Takahashi, T.; Nabata, H. Bioorg. Med. Chem. Lett., submitted for publication.
- (a) Okamoto, T.; Hirobe, M. Yuki Gosei Kagaku Kyokaishi 1968, 26, 746.
 (b) Morita, M.; Nagano, T.; Hirobe, M. Chem. Pharm. Bull. 1993, 41, 2121.
- 5. Thornber, C. W. Chem. Soc. Rev. 1979, 8, 563
- 6. Yoo, S-E.; Suh, J. H.; Lee, S. J.; Jeong, N. Bioorg. Med. Chem. Lett. 1992, 2, 381.
- (a) Carpino, L. A.; Giza, C. A.; Carpino, B. A. J. Am. Chem. Soc. 1959, 81, 955.
 (b) Tamura, Y.; Minamikawa, J.; Miki, Y.; Matsugashita, S.; Ikeda, M. Tetrahedron Lett. 1972, 4133.
- 8. Freskos, J. N. Synth. Commun. 1988, 18, 965.
- 9. Ishizawa, T.; Koga, H.; Sato, H.; Kuromaru, K.; Makino, T.; Taka, N.; Takahashi, T.; Sato, T.; Nabata, H. Bioorg. Med. Chem. Lett. 1993, 3, 1659.

(Received in Japan 19 October 1994; accepted 12 November 1994)